Skip to main content

Problemas Método Simples Móvel Médio


Médias móveis Uma média móvel é um dos indicadores de análise técnica mais flexíveis e mais comumente usados. É altamente popular entre os comerciantes, principalmente devido à sua simplicidade. Funciona melhor em um ambiente de tendências. Introdução Nas estatísticas, uma média móvel é simplesmente uma média de um determinado conjunto de dados. No caso de análise técnica, esses dados são na maioria dos casos representados pelos preços de fechamento dos estoques para os dias específicos. No entanto, alguns comerciantes também usam médias separadas para mínimos e máximos diários ou até mesmo uma média de valores de ponto médio (que eles calculam ao resumir o mínimo e o mínimo diários e dividindo por ele dois). No entanto, você pode construir uma média móvel também em um período de tempo mais curto, por exemplo, usando dados diários ou de minutos. Por exemplo, se você quiser fazer uma média móvel de 10 dias, você adiciona todos os preços de fechamento durante os últimos 10 dias e depois divida-o por 10 (neste caso, é uma média móvel simples). No dia seguinte, fazemos o mesmo, exceto que voltemos os preços nos últimos 10 dias, o que significa que o preço que foi o último em nosso cálculo para o dia anterior não está mais incluído na média de hoje - é substituído por ontem preço. A mudança de dados dessa maneira com cada novo dia de negociação, daí o termo média móvel. O propósito e uso das médias móveis na análise técnica A média móvel é um indicador de tendência. Seu objetivo é detectar o início de uma tendência, seguir seu progresso, bem como relatar sua reversão se ocorrer. Ao contrário do gráfico, as médias móveis não prevêem o início ou o fim de uma tendência. Eles só confirmam isso, mas apenas algum tempo após a reversão real ocorrer. Isso decorre da sua própria construção, já que esses indicadores são baseados unicamente em dados históricos. Os dias menos que uma média móvel contém, mais cedo pode detectar uma inversão de tendências. É devido à quantidade de dados históricos, que influenciam fortemente a média. Uma média móvel de 20 dias gera o sinal de uma reversão da tendência mais cedo do que a média de 50 dias. No entanto, também é verdade que quanto menos dias usamos no cálculo das médias móveis, mais sinais falsos recebemos. Assim, a maioria dos comerciantes usa uma combinação de várias médias móveis, que devem produzir um sinal simultaneamente, antes que um comerciante abra sua posição no mercado. No entanto, uma média móvel atrasada atrás da tendência não pode ser completamente eliminada. Sinais de negociação Qualquer tipo de média móvel pode ser usado para gerar sinais de compra ou venda e esse processo é muito simples. O software de gráficos traça a média móvel como uma linha diretamente no gráfico de preços. Os sinais são gerados em locais onde os preços cruzam essas linhas. Quando o preço cruza acima da linha média móvel, isso implica o início de uma nova tendência ascendente e, portanto, significa um sinal de compra. Por outro lado, se o preço cruza sob a linha de média móvel e o mercado também encerra nesta área, ele sinaliza o início de uma tendência descendente e, portanto, constitui um sinal de venda. Usando médias múltiplas Também podemos optar por usar movimentos múltiplos Médias simultaneamente, para eliminar o ruído dos preços e, em especial, os sinais falsos (whipsaws), que o uso de uma média móvel única cede. Ao usar múltiplas médias, um sinal de compra ocorre quando a menor das médias cruza acima da média mais longa, e. A média média de 50 dias ultrapassa a média de 200 dias. Por outro lado, um sinal de venda neste caso é gerado quando a média de 50 dias cruza sob a média de 200. Similarmente, também podemos usar uma combinação de três médias, p. Uma média de 5 dias, 10 dias e 20 dias. Neste caso, uma tendência ascendente é indicada se a linha média de 5 dias estiver acima da média móvel de 10 dias, enquanto a média de 10 dias ainda está acima da média de 20 dias. Qualquer cruzamento de médias móveis que leva a essa situação é considerado um sinal de compra. Por outro lado, a tendência descendente é indicada pela situação quando a linha média de 5 dias é menor do que a média de 10 dias, enquanto a média de 10 dias é menor do que a média de 20 dias. Usando três médias móveis simultaneamente, limita a quantidade de falso Sinais gerados pelo sistema, mas também limita o potencial de lucro, já que esse sistema gera um sinal comercial somente após a tendência estar firmemente estabelecida no mercado. O sinal de entrada pode ser gerado apenas um curto período de tempo antes da inversão das tendências. Os intervalos de tempo utilizados pelos comerciantes para calcular as médias móveis são bastante diferentes. Por exemplo, os números Fibonacci são muito populares, como o uso de médias de 5 dias, 21 dias e 89 dias. No mercado de futuros, a combinação de 4, 9 e 18 dias também é muito popular. Prós e contras A razão pela qual as médias móveis foram tão populares é que elas refletem várias regras básicas de negociação. O uso de médias móveis ajuda você a cortar suas perdas ao permitir que seus lucros sejam executados. Ao usar médias móveis para gerar sinais de negociação, você sempre troca na direção da tendência do mercado, não contra ela. Além disso, em oposição à análise de padrões de gráfico ou outras técnicas altamente subjetivas, as médias móveis podem ser usadas para gerar sinais de negociação de acordo com regras claras - eliminando assim a subjetividade das decisões comerciais, o que pode ajudar a psique dos comerciantes. No entanto, uma grande desvantagem das médias móveis é que eles funcionam bem apenas quando o mercado está em tendência. Assim, em períodos de mercados intermitentes quando os preços flutuam em uma faixa de preço particular, eles não funcionam de forma alguma. Esse período pode facilmente durar mais de um terço do tempo, de modo que confiar nas médias móveis sozinho é muito arriscado. Alguns comerciantes, por isso, recomendam combinar médias móveis com um indicador que mede a força de uma tendência, como ADX ou usar médias móveis apenas como um indicador de confirmação para seu sistema comercial. Tipos de médias móveis Os tipos de médias móveis mais utilizados são a média móvel simples (SMA) e a média móvel ponderada exponencialmente (EMA, EWMA). Este tipo de média móvel também é conhecido como média aritmética e representa o tipo de média móvel mais simples e comumente usado. Calculamos isso resumindo todos os preços de fechamento de um determinado período, que posteriormente dividimos pelo número de dias no período. No entanto, dois problemas estão associados a este tipo de média: leva em consideração apenas os dados incluídos no período selecionado (por exemplo, uma média móvel simples de 10 dias leva em consideração apenas os dados dos últimos 10 dias e simplesmente ignora todos os outros dados Antes deste período). Também é muitas vezes criticado pela atribuição de pesos iguais a todos os dados no conjunto de dados (ou seja, em uma média móvel de 10 dias, um preço de 10 dias atrás tem o mesmo peso que o preço de ontem - 10). Muitos comerciantes argumentam que os dados dos últimos dias deveriam ter mais peso do que os dados mais antigos - o que resultaria na redução da média de atraso na tendência. Este tipo de média móvel resolve ambos os problemas associados a médias móveis simples. Em primeiro lugar, aloca mais peso em sua computação para dados recentes. Também reflete, em certa medida, todos os dados históricos para o instrumento específico. Esse tipo de média é nomeado de acordo com o fato de que os pesos dos dados para o passado diminuem exponencialmente. A inclinação desta diminuição pode ser ajustada às necessidades do comerciante. Explicar A volatilidade média móvel ponderada exponencialmente é a medida mais comum de risco, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para avaliar o risco futuro.) Usamos os dados atuais do preço das ações da Googles para calcular a volatilidade diária com base em 30 dias de estoque de dados. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel ponderada exponencialmente (EWMA). Vendas históricas. Volatilidade implícita Primeiro, vamos colocar essa métrica em um pouco de perspectiva. Existem duas abordagens amplas: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é o prólogo que medimos a história na esperança de que seja preditivo. A volatilidade implícita, por outro lado, ignora o histórico que resolve para a volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que de forma implícita, uma estimativa consensual da volatilidade. (Para leitura relacionada, veja Os Usos e Limites de Volatilidade.) Se nos concentrarmos apenas nas três abordagens históricas (à esquerda acima), eles têm dois passos em comum: Calcule a série de retornos periódicos. Aplica um esquema de ponderação. Primeiro, nós Calcule o retorno periódico. Isso geralmente é uma série de retornos diários, em que cada retorno é expresso em termos compostos continuamente. Para cada dia, tomamos o log natural da proporção dos preços das ações (ou seja, preço hoje dividido por preço ontem, e assim por diante). Isso produz uma série de retornos diários, de u i to u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando a volatilidade para avaliar o risco futuro), mostramos que, sob um par de simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Observe que isso resume cada um dos retornos periódicos, então divide esse total pelo Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos ao quadrado. Dito de outra forma, cada retorno quadrado recebe um peso igual. Então, se o alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples parece algo assim: O EWMA melhora a diferença simples. A fraqueza dessa abordagem é que todos os retornos ganham o mesmo peso. O retorno de ontem (muito recente) não tem mais influência na variação do que o retorno dos últimos meses. Esse problema é corrigido usando a média móvel ponderada exponencialmente (EWMA), na qual os retornos mais recentes têm maior peso na variância. A média móvel ponderada exponencialmente (EWMA) apresenta lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno ao quadrado é ponderado por um multiplicador da seguinte forma: por exemplo, RiskMetrics TM, uma empresa de gerenciamento de risco financeiro, tende a usar uma lambda de 0,94 ou 94. Neste caso, o primeiro ( Mais recente) o retorno periódico ao quadrado é ponderado por (1-0.94) (. 94) 0 6. O próximo retorno ao quadrado é simplesmente um múltiplo lambda do peso anterior neste caso 6 multiplicado por 94 5,64. E o terceiro dia anterior é igual (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser inferior a um) do peso dos dias anteriores. Isso garante uma variação ponderada ou tendenciosa em relação a dados mais recentes. (Para saber mais, confira a Planilha do Excel para a Volatilidade dos Googles.) A diferença entre a simples volatilidade e o EWMA para o Google é mostrada abaixo. A volatilidade simples efetivamente pesa cada retorno periódico em 0.196 como mostrado na Coluna O (tivemos dois anos de dados diários de preço das ações. Isso é 509 devoluções diárias e 1509 0.196). Mas observe que a coluna P atribui um peso de 6, então 5.64, depois 5.3 e assim por diante. Essa é a única diferença entre variância simples e EWMA. Lembre-se: depois de somar toda a série (na coluna Q), temos a variância, que é o quadrado do desvio padrão. Se queremos volatilidade, precisamos lembrar de assumir a raiz quadrada dessa variância. Qual é a diferença na volatilidade diária entre a variância e EWMA no caso do Googles. É significativo: a variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para obter detalhes). Aparentemente, a volatilidade de Googles estabeleceu-se mais recentemente, portanto, uma variação simples pode ser artificialmente alta. A diferença de hoje é uma função da diferença de dias Pior. Você notará que precisamos calcular uma série longa de pesos exponencialmente decrescentes. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que a série inteira se reduz convenientemente a uma fórmula recursiva: Recursiva significa que as referências de variância de hoje (ou seja, são uma função da variância dos dias anteriores). Você também pode encontrar esta fórmula na planilha e produz exatamente o mesmo resultado que o cálculo de longitude. Diz: A variação de hoje (sob EWMA) é igual a variação de ontem (ponderada por lambda) mais retorno de ônibus quadrado (pesado por um menos lambda). Observe como estamos apenas adicionando dois termos em conjunto: variância ponderada de ontem e ponderada de ontem, retorno quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como RiskMetrics 94) indica decadência mais lenta na série - em termos relativos, teremos mais pontos de dados na série e eles vão cair mais devagar. Por outro lado, se reduzirmos a lambda, indicamos maior deterioração: os pesos caem mais rapidamente e, como resultado direto da rápida deterioração, são usados ​​menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque e a métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variância historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variação simples é que todos os retornos recebem o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo é diluído por dados distantes (menos relevantes). A média móvel ponderada exponencialmente (EWMA) melhora a variação simples ao atribuir pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso aos retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite a Tartaruga Bionica.) Uma rodada de financiamento onde os investidores adquirem ações de uma empresa com uma avaliação mais baixa do que a avaliação colocada no. Um atalho para estimar o número de anos necessários para dobrar o seu dinheiro a uma dada taxa de retorno anual (ver anual composto. A taxa de juros cobrada sobre um empréstimo ou realizada em um investimento durante um período de tempo específico. A maioria das taxas de juros são. Garantia de grau de investimento apoiada por um conjunto de títulos, empréstimos e outros ativos. Os CDOs não se especializam em um tipo de dívida. O ano em que o primeiro ingresso de capital de investimento é entregue a um projeto ou empresa. Isso marca quando o capital é. Leonardo Fibonacci era um matemático italiano nascido no século 12. Ele é conhecido por ter descoberto os quotFibonacci números, quot.

Comments